Palmprints: a Cooperative Co-evolutionary Algorithm for Clustering Hand Images
نویسندگان
چکیده
The main objective of Project PalmPrints is to develop and demonstrate a special co-evolutionary genetic algorithm (GA) that optimizes (a clustering fitness function) with respect to three quantities, (a) the dimensions of the clustering space; (b) the number of clusters; and (c) and the locations of the various clusters. This genetic algorithm is applied to the specific practical problem of hand image clustering, with success. In addition to the above, this research effort makes the following contributions: (a) a CD database of (raw and processed) right-hand images; (b) a number of novel features designed specifically for hand image classification; (c) an extended fitness function, which is particularly suited to a dynamic (i.e. dimensionality varying) clustering space. Despite the complexity of the multi-optimizational task, the results of this study are clear. The GA succeeded in achieving a maximum fitness value of 99.1%; while reducing the number of dimensions (features) of the space by more than half (from 84 to 41).
منابع مشابه
PalmPrints: A Novel Co-evolutionary Algorithm for Clustering Finger Images
The purpose of this study is to explore an alternative means of hand image classification, one that requires minimal human intervention. The main tool for accomplishing this is a Genetic Algorithm (GA). This study is more than just another GA application; it introduces (a) a novel cooperative coevolutionary clustering algorithm with dynamic clustering and feature selection; (b) an extended fitn...
متن کاملMulti-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملThe ensemble clustering with maximize diversity using evolutionary optimization algorithms
Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...
متن کاملImproved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملA partition-based algorithm for clustering large-scale software systems
Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Image Graphics
دوره 5 شماره
صفحات -
تاریخ انتشار 2005